Altillo.com > Exámenes > UBA - Ciencias Exactas > Análisis I

Análisis I

1° Parcial

Tema 1

18 / 12 / 2000

Altillo.com

1. Sea b > 0. Consideremos f : [-b,3b] definida por: f (x) = x2 + bx + 5.
¿En qué puntos de su dominio alcanza f su máximo absoluto y su mínimo absoluto?
Hallar el valor de la función en esos puntos.

2. Hallar el desarrollo en serie de potencias alrededor del origen de la función g(x) = x(ex)2
Indicar el radio de convergencia de la serie.

3. Probar que existe x > 1 tal que: sin x = x2 - 1

4. Decidir si la siguiente serie es convergente:

Justificar la respuesta.

5_a) Sea f : continua en el origen. ¿Es cierto que existe > 0 tal que f es continua en (-d ,d )?
b) Dada  f : (a,b) derivable y acotada. ¿Es cierto que f alcanza su valor máximo en el intervalo (a,b)?

Justifique las respuestas dadas en a) y b)