Altillo.com > Exámenes > UBA - Psicología > Estadística
Estadística |
2° Parcial |
Cat. Pano |
2° Cuat. de 2007 |
Altillo.com |
FINAL ESTADISTICA: 9 hs. HY.
• Conceptos Básicos: Población: Conjunto de individuos (personas, animales o TR)
que tienen características similares y particulares. Muestra: Parte de la
población. Parámetro: Propiedad descriptiva de la muestra. Población de
individuos: Conjunto de individuos en los que estamos interesados. Población de
observaciones: Variable adjudicada a un valor generalmente numérico. Variable:
Característica de los individuos de una población que puede tomar distintos
valores.
• Variables Cualitativas y Cuantitativas:
Variable Cualitativa: Atributos, condiciones o cualidades que poseen los
individuos (diagnostico clínico, sexo, actividad laboral). Sus valores pueden
estar ordenados o no (aparecen ordenados como son presentados). Se relacionan
con los niveles de medición Nominal y Ordinal.
Nominal: Conjunto de nombres que se designan a las distintas clases de cosas que
se miden. Sus elementos tiene la única propiedad de ser símbolos diferentes.
Ejemplo: F=1, M=2. Esos números son usados como etiquetas o códigos; solo sirven
para distinguirlas. Clasifica clases distintas entre si, no hay una mejor que
otra. Clases exhaustivas (todos los elementos de la población, no puede estar en
dos categorías al mismo tiempo) y excluyentes (se les puede asignar un número:
codificarlo). GRÁFICO: Diagrama circular y diagrama de barras.
Ordinal: Es un conjunto entre cuyos elementos hay establecido un orden
jerárquico, y son diferentes los elementos. Se presentan escalas (nivel alto,
medio, bajo). No se puede cuantificar ni decir que tanto mayo qué es. GRÁFICO:
Diagrama de barras, pues permite visualizar mejor los datos.
Variable Cuantitativa:
Variable discreta: Cada uno de sus valores es centro de un intervalo real que no
contiene otro valor de la variable. Son valores asignados, se sabe cual sigue.
Ejemplo: Edad. GRÁFICO: Diagrama de bastones y Diagrama de Tallo-Hoja.
Variable continua: El conjunto de sus valores es un intervalo real. Por lo
general hay decimales. Ejemplo: Peso, temperatura, altura. GRÁFICO: Diagrama de
Tallo-Hoja, Histograma, Poligonal de frecuencia, Histograma de áreas, y
Poligonal de frecuencias acumulada.
Se relaciona con los niveles de medición Intercalar y de Razones.
Intervalar: Se llama así porque se puede calcular la longitud del intervalo que
se mide. Sus elementos tienen 3 propiedades: son símbolos diferentes, están
ordenados, y tiene un sentido comparar la longitud de los intervalos
determinados por pares de ellos. El 0 es arbitrario y carece de significado la
razón entre 2 elementos de la escala. El 0 no significa ausencia de variable,
sino algo particular. Ejemplo: Examen. Se dice que tanto mayor qué es.
Razones: Tiene un 0 absoluto, relacionado con la cantidad nula de lo que se
quiere medir. El 0 es ausencia de característica. Relacionada con peso, altura y
edad. Se puede cuantificar.
• La distribución de frecuencia: Es la organización de observaciones que asocia
a cada valor de la variable su correspondiente frecuencia. Destaca el peso que
cada valor de la variable tiene en la muestra. Resalta características
importantes. La distribución de frecuencia se puede presentar en forma de tabla
o grafico. Hay varios tipos de frecuencia:
Fa: numero de veces que se observa cada valor de la variable en la muestra.
Fr: Fa/n. Siempre es mayor o igual a 0 y menor o igual a 1. Da idea del peso e
cada valor de la variable en el conjunto de observaciones.
F%: Expresa qué porcentaje del total corresponde a la Fa. F%: Fr . 100.
• Las medidas d tendencia central son aquellas que ‘representan’ a la totalidad
de las observaciones. Son la Moda, Mediana y Media.
Moda: Es la más fácil de calcular. Es el valor de la variable con mayor
frecuencia. Aplicabilidad a nivel nominal. Representa el valor de la variable
más probable para una extracción al azar. Dependiendo del tamaño del grupo,
puede ser muy estable o poco estable.
Mediana: Es un valor de la variable que ocupa una posición central determinando
dos subconjuntos de valores de la variable. El de los valores mayores que ella y
el de los menores. No se afecta por el mayor o menor tamaño de puntuaciones
situadas por encima o por debajo de ella. Aplicabilidad desde el nivel ordinal,
donde puede no existir. n/2.
Media: (aritmética). Suma de todas las observaciones dividida por el total de
ellas. Es el promedio. Se afecta por puntuaciones mas alejadas del centro. Es
sensible a modificaciones en sus puntuaciones. Puede no representar al conjunto.
No recomendable si hay valores extremos. Se utiliza en variables cuantitativas.
• Modelo para la variable: es una distribución de frecuencias teóricas. Es una
construcción teórica, una presentación simplificada de realidad que permite
comprender mejor ciertos aspectos de la misma, facilita su análisis e
interpretación, permite formular conclusiones y realizar predicciones. Contar
con este modelo permite al estadístico deducir conclusiones que luego
confrontara con la relación observada. Las frecuencias en un modelo se llaman
probabilidades. Modelo: distribución de probabilidades.
Variable Bernoulli: Es una variable que toma sólo dos valores (ejemplo sexo: F y
M; Condición laboral: trabaja, no trabaja). Estas variables son dicotómicas o
bien que han sido dicotomizadas. A uno de los valores se lo llama ‘éxito’ y al
otro ‘fracaso’. Estos nombres no se deben a ninguna connotación particular sino
que depende de los objetivos del estudio. Suelen codificarse con 1 al ‘éxito’ y
con 0 al ‘fracaso’. P= parámetro o probabilidad de éxito o de fracaso. 1=p /
0=1-p.
Variable Binomial: Variable que se vincula con la Bernoulli. Es la que cuenta la
cantidad de éxitos en n observaciones de una variable Bernoulli, si se verifican
estas dos condiciones:
1. Condición de estabilidad: La probabilidad de éxito, p, debe permanecer
constante en las n observaciones de la variable Bernoulli.
2. Condición de independencia: La probabilidad de obtener éxito en una
observación no aumenta ni disminuye si se conoce el resultado de otra
observación.
La distribución de una variable Binomial queda totalmente determinada si se
conocen los valores del numero natural n y de la probabilidad p. Éstos se llaman
parámetros de la distribución binomial.
Distribución Normal: Es un modelo que se ajusta a las observaciones de muchas
variables continuas en situaciones extremas. Su representación gráfica se
denomina curva o campana de Gauss. Las características comunes a todas las
curvas son:
a) Tienen un único máximo en la media poblacional. Las distribuciones normales
son unimodales.
b) Son simétricas del eje vertical que pasa por x= media poblacional
c) Tienen dos puntos de inflexión, donde cambia la concavidad, en los puntos
correspondientes a la media más/menos una desviación típica.
En x= media – desvío poblacional, la concavidad va hacia abajo.
En x= media + desvío poblacional, la concavidad va hacia arriba.
d) Se acerca asintóticamente al eje de abscisas tanto por derecha como por la
izquierda sin llegar a cortar el eje en ningún punto finito y sólo en infinito
positivo.
e) El área total bajo la curva indica la probabilidad correspondiente a la
totalidad de los valores y vale 1. Bajo la curva normal están comprendidos el
100% de los casos.
• Prueba de hipótesis: Como lo mencioné ni bien comenzó el oral, un parámetro es
una propiedad descriptiva de la población. Cuando no se conocen los valores
individuales del total de la población, se pueden estimar los parámetros a
través de los valores obtenidos en las muestras (razón por la cual las muestras
han de ser representativas). Entonces se crea una hipótesis estadística
inferencial, que es una afirmación que se formula sobre o acerca de la
distribución de una o más variables. Una prueba de hipótesis es un conjunto de
operaciones estadísticas que permite mediante la utilización del muestreo,
rechazar o no la hipótesis formulada, posibilitando el cálculo de la
probabilidad de cometer error en la decisión adoptada. Siempre hay dos
hipótesis:
Hipótesis Nula: o básica, o de nulidad. Simbolizada H0. Es la hipótesis donde se
afirma un valor numérico de un parámetro, es la hipótesis de la igualdad. Se
dice que es la hipótesis contraria de lo que quiere probar el investigador.
Hipótesis Alternativa: Si se rechaza la hipótesis nula, ésta es la que se
considera. Simbolizada H1. Es la que el investigador quiere probar.
La decisión entre la H0 y H1, se hace en base a un estadístico, llamado
estadístico de prueba, que vincula el estimador obtenido con el parámetro. La
zona de rechazo o región crítica es el conjunto de valores del recorrido del
estadístico de prueba, con los cuales se rechaza la H0, se llama punto crítico a
la frontera de la región crítica. Entonces se establece una Regla de decisión
que dice que:
1. se rechaza la H0, si el estadístico de prueba toma un valor que pertenece a
la zona de rechazo.
2. no se rechaza la H0, si el estadístico de prueba toma un valor que no
pertenece a la zona de rechazo.
Entonces puede haber dos tipos de error: Si la H0 es verdadera y se rechaza, es
ERROR DE TIPO I (a la probabilidad o riesgo de cometer tal error se lo simboliza
con la letra griega alfa), pero si no se rechaza, la decisión es correcta. Si la
H0 es falsa y se rechaza, la decisión es correcta, pero si se no se rechaza, se
produce el ERROR DE TIPO II (a la probabilidad o riesgo de cometer tal error se
lo simboliza con la letra griega beta).
Se llama nivel de significación de la prueba, a la probabilidad de comer ERROR
DE TIPO I. Es la probabilidad de la zona de rechazo. En general, es un dato, y
de este dato se obtiene el o los puntos críticos, y se conoce la región crítica.
Por lo general ante estas dos opciones (H0 y H1), cuando tenemos que
arriesgarnos a tomar una decisión bajo incertidumbre, nos parece que es más
razonable pensar que se partió de una hipótesis falsa antes de pensar que
ocurrió algo que tenía baja probabilidad de ocurrir. Es por ello que en el
procedimiento de la prueba de hipótesis cuando ocurre un valor poco probable, o
sea el valor del estadístico de prueba pertenece a la zona de rechazo, se decide
rechazar la H0.
• Relación entre variables: Descubrir la relación entre variables constituye uno
de los objetivos de la Psicología, y la estadística ha desarrollado instrumentos
adecuados APRA la tarea de detectar y cuantificar entre series de observaciones.
Correlación: problemas referentes a la variación conjunta de dos variables, su
intensidad y su sentido. Sus gráficos se denominan Diagramas de dispersión o
dispersogramas, y la configuración de puntos resultante se denomina nube de
puntos. De acuerdo con la disposición de dichos puntos, se puede decir que la
relación es lineal, o curvilineal. Dentro de la relación lineal existen 3 tipos:
Relación lineal directa o positiva: Se detecta esta entre dos variables cuando
covarían en el mismo sentido, es decir, cuando a valores bajos de una de ella
corresponden valores de la otra, a valores medios de una corresponden valores
medios de la otra y a valores altos de una corresponden valores altos de la
otra.
Relación lineal inversa o negativa: Se detecta esta entre dos variables cuando
covarían en sentido contrario, es decir, cuando a valores bajos de una de ellas
corresponden valores altos de la otra, etc.
Relación lineal nula: Se detecta cuando no covarían en ninguno de los dos
sentidos, es decir, cuando a valores bajos de una corresponden valores altos o
bajos de la otra, etc.
La suma de productos indica el sentido de la relación lineal. El coeficiente de
correlación lineal de Pearson ®, cuantifica la relación lineal entre dos
variables. Este coeficiente nunca es mayor que 1 ni menor que -1. Si r=1
entonces se dice que la relación lineal entre estas variables es de sentido
directo o de intensidad máxima o bien que la relación lineal es perfecta de
sentido directo. (/) Si r=-1 entonces se dice que esta relación es de sentido
inverso e intensidad máxima, o que la relación lineal es perfecta de sentido
inverso (\). Si r=0 entonces no hay relación lineal.